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We study unbiased random walks in discrete time n on a square lattice, in the form of a strip of finite
width N in the y direction, with a family of boundary conditions parametrized by a stay probability T’
per time step at the edge sites. The diffusion coefficient K =lim,,_, ,{X2) /n is computed analytically to
exhibit its dependence on N and I'. The result is generalized to the case of a strip with side branches at-
tached to the boundary sites to simulate the effect of rough edges. A further generalization is made to
obtain K for a random walk in d dimensions on a lattice bounded in one of the directions. Thus, K
serves as a probe of both the transverse size of the region in which diffusion takes place and the nature of

the bounding surfaces.

PACS number(s): 05.40.+j, 02.50.+s, 05.60. +w

I. INTRODUCTION

Diffusion in porous and random media [1,2] is a subject
of much current interest. Although it is clear that quan-
tities such as the diffusion coefficient, the diffusion front,
etc. must carry considerable information about the
geometry and the nature of the bounding surfaces of the
region in which diffusion takes place, few rigorous and
exact results are available. We attempt to investigate
such dependences of the diffusion coefficient K in a model
that is simple, but in which K can be found analytically: a
random walk (RW) on an infinitely long strip of finite
width N. Introducing a stay or ‘‘sojourn” probability T
per unit time at sites on the edges of the strip, we have a
two-parameter family (N, I") characterizing, respectively,
the transverse size of the region in which diffusion takes
place, and the nature of the boundary. We also general-
ize our result to obtain exact expressions for K in the case
of strips with rough or “spiky” (but not random) boun-
daries.

The present work is in the general spirit of (but of
course far more modest than) other well-known inverse
problems, such as that of “hearing the shape of a drum,
given perfect pitch” [3-5]. In the latter, one deduces in-
formation about the area, perimeter, connectivity, etc. of
a two-dimensional region from a knowledge of the spec-
trum of the Laplacian operator on the region, with Cau-
chy boundary conditions. (Reference [S] gives an in-
teresting and simpler derivation of many of the key re-
sults in terms of a spatially discretized version of the
problem.) However, there are several noteworthy
differences between this problem and the present work.
We are interested (merely) in finding out what informa-
tion can be obtained from the residue at the leading pole
of the resolvent of the operator, in a region that is un-
bounded along at least one direction: the mean-squared
displacement in this direction diverges with increasing
time and there is, in fact, no nonvanishing equilibrium
probability distribution.

Consider a simple unbiased random walk in discrete
time n on a square lattice in the form of a strip of width
N. The sites are labeled (j,m), where j€Z and
m=1,2,...,N. At every interior site, the walker jumps
after a time step to any of the four nearest-neighbor sites
with probability 1. At a surface site (j,1) or (j,N), the
walker either remains at the same site (at the end of a
time step) with probability I', or jumps to any of its three
neighbors with probability (1—I')/3 (Fig. 1). The stay
probability I' is a very convenient way of characterizing
the nature of the boundary, e.g., its ‘“‘stickiness,” “rough-
ness,” etc. The value I'= corresponds to the standard
reflecting boundary conditions (on a square lattice). In
this case (and in this case alone), the motion along the x
direction decouples from that along the y direction, in the
sense that the probability P, (j,m) factorizes in the vari-
ables j and m for all n, provided one starts with a factor-
ized initial distribution Py(j,m). The mean-squared dis-
placement {X?) in the unbounded direction (the quantity
of primary interest here) is exactly equal to n /2 in this
case, independent of the width N of the strip. This is of
course the value of {X?) on a square lattice of infinite ex-
tent in both directions.
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FIG. 1. Lattice of finite width (N sites) in the y direction.
Transition probabilities per time step are indicated.
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The limiting value I'=1 corresponds to fully absorbing
boundaries, and there is then no long-range diffusion
({X?) does not diverge as n—> ). At the other ex-
treme, we have I'=0—which may be regarded as a
“slip” boundary condition. The RW is then a “myopic”
one [6]: the walker jumps from every site to any of its
available nearest-neighbor sites with equal probability (+
at the boundary sites, 1 at the interior sites). The
motions along the x and y directions are coupled because
of the correlation induced by the behavior at the boun-
daries of the strip. The diffusion coefficient K, defined by
the leading asymptotic behavior of { X?) according to

K= lim (X?)/n , (1.1)

then becomes N dependent: It has been shown recently
[7] that one has, in this case,

K=N/(2N—1). (1.2)

Thus K depends explicitly on the width N of the strip
when I'=0, and yields information on the size of the re-
gion. We shall first generalize the result to find K for an
arbitrary value of I', using two different methods. The
first is a ““direct” calculation in which we derive, as a pre-
liminary step, a useful general formula for K in terms of
the discriminant of an N X N matrix. The second is a cal-
culation in terms of mean first passage times, because this
enables us, in turn, to find K for spiky boundaries, in
which a side branch emanates from each surface site: As
far as diffusion in the x direction is concerned, this situa-
tion is equivalent to a RW on a strip without spikes, but
with a certain stay probability (to be computed) at the
surface sites.

II. DIFFUSION COEFFICIENT ON A STRIP

A. Direct calculation of K

The probability distribution P,(j,m) obeys the follow-
ing set of recursion relations:

P, 1, )=TP,(j,)+1(1—D)[P,(j—1,1)

+P,(j+1,1)]
+1P,(j,2),

P, (j,2)=%[P,(j—1,2)+P,(j+1,2)] (2.1)
+i(1-D)P,(;, )+ L+P,(j,3),
P, (jym)=L[P,(j—1,m)+P,(j+1,m)

+P,(jm—1)+P,(j,m+1)]
3=m=N-2),
and two other equations similar to the first two lines for

P, (jN) and P, (j,N—1), respectively. Next, we
define the discrete Fourier and Laplace transform,

8

R (k,m,£)=

n

S P,(j,m)e™ign . (2.2)
0j=—o

Il

From the definition of the mean-squared displacement in
the x direction, it follows that the quantity we seek is
given by
(x2)=Qmi) ' Pdge !

aZ N

R (k,m,¢§) ,
ok? ,,,2:1 .

Il
=3

(2.3)
where the contour encircles the pole at the origin. As we
shall see, the expression in square brackets has a double
pole at £=1. When the integral is evaluated by opening
out the contour, the leading asymptotic behavior of (X, ,f)
comes from the residue at this pole, the factor n [cf. Eq.
(1.1)] coming from the derivative of £"~!. The exact
determination of (X,f) is very involved, but its leading
asymptotic behavior can be extracted more easily. The
transform R (k,m,§)=R,, obeys the matrix equation
M, R, ,=f, where f is specified by the initial distri-
bution Py(j,m)=8,.f,,, and the elements of the (N X N)
tridiagonal matrix M are as follows:

M =Myy=1—T&—2(1—T)&cosk ,

M, =1—§cosk

M21:MN41,N=*$;(1—F) ,
Mm—l,m:Mm—Fl,m:_"‘% 2<m=<N-—1).

Then R=M"!f, and the sum of its elements is of the
form

N
S R(k,m,E)=NKE)/AKE),

m=1

(2.5)

where N is a polynomial in £ and an entire function of k.
The denominator

A(k,&)= detM (2.6)

is also a polynomial in £ and a function of ¢ = cos k as far
as its k dependence is concerned. Moreover, the conser-
vation of probability, ¥ ; ,, P,(j,m)=1 for each n 20, im-
plies that N(0,£)/A(0,£)=(1—¢)~!. Using these facts
in Eq. (2.3), we obtain

2y o)1 Ggeen—t| L[ 1 8a
(X2)=—Qmi) 'Pdee T %
2
+ N :
3k? | |k=0c=1

(2.7)

As each column of M adds up to (1—¢) when k is set
equal to zero, A has a simple zero at £=1. Therefore it is
the first term in square brackets in Eq. (2.7) that has a
double pole at £=1, and is responsible (as we have al-
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ready explained) for the leading asymptotic behavior of
(X7}). Writing A(0,£)=(£—1)[9A(0,£) /38— + - -~
and substituting for the factor 1/A in Eq. (2.7), we obtain
the following compact formula for the diffusion
coefficient:

2 /28
ac / o€

In practice, the calculation can be simplified further by
exploiting the fact that K is independent of the initial
condition Py(j,m). The latter quantity can therefore be
chosen SO as to  maintain the  symmetry
P,(j,m)=P,(j,N +1—m). As a result, one can work
with a reduced matrix M' of order [(N +1)/2] rather
than N that has, however, the same determinant A as M.
Evaluating the derivatives involved in Eq. (2.8) we find,
after all the algebra is done, the result

(2.8)

c=1,=1

N(1-T)
2N(1—-T)+4I'—1

B. K in terms of a mean escape time

Before we discuss the result obtained in Eq. (2.9) above,
we digress to point out how K may be obtained by a
somewhat simpler method, because it is capable of being
generalized to yield K for the more complicated struc-
tures to be considered further on.

Let x, denote the displacement in the horizontal direc-
tion at the nth time step. The horizontal displacement in
n time steps is then X, =(x,+x,+ - +x,). Each x,
can take on the values —1, 0, or +1, and is uncorrelated
to the others. If the square lattice is unbounded in both
directions, all its sites are equivalent, and the x, are iden-
tically distributed. This continues to be true on our strip
of finite width if perfectly reflecting boundary conditions
obtain, i.e., if I'=1: for, an unrestricted RW may be im-
agined to occur on the unbounded plane comprising the
original strip and the infinite set of images formed by suc-
cessive reflections about its edges. For all other values of
I', all the sites of the strip are not equivalent (the jump
probabilities out of the edge sites are different from those
out of the interior sites), so that the x, are no longer
identically distributed random variables. They continue
to be uncorrelated to each other, because the RW is Mar-
kovian. From Eq. (1.1) it is then clear that

n~! é (x2)

n'=1

K= lim

n— o

= lim (x2)=(x?) .

n— oo

(2.10)

To compute the final quantity on the right, we note that
the contribution to (x?2) of a step in the vertical direc-
tion is zero. As we need the mean-squared displacement
in the horizontal direction alone, suppose we project the
RW onto a linear chain in the x direction. Excursions in
the y direction of the original RW would then correspond
to a stay at the same site in the projected walk. In effect,
therefore, we need the mean-squared displacement in a
single step for an RW on a linear chain with a certain

nonzero stay probability s (at every site) at the end of
each time step, corresponding to the walker on the strip
going back and forth in the vertical direction without
taking a horizontal step. Therefore the probability of a
single step in the horizontal direction (for the projected
walk) is 1 —s. Hence the mean-squared displacement in a
single time step is {x2)=(1)(1—s5)+(0)(s)=1—s. How-
ever, s is easily related to the first moment of the staying
probability distribution function at any site on the pro-
jected one-dimensional chain: the mean time to escape
from any site to either of its neighboring sites on the
chain is

T=3 ns" " N1—s5)/ 3 s" H1—=s)=1/(1—s) .

n=1 n=1

(2.11)

Finally, therefore, the required diffusion coefficient on the
original strip is given by

K=(1—s)=1/T . (2.12)
We note that it is only the mean time of residence T that
is required for the determination of K (rather than the
full staying probability distribution itself), because we are
interested in merely the leading asymptotic behavior of
(X?) as n— oo; cf. Eq. (2.10). [What we have here is the
discrete-time analog of a continuous-time RW with a
general nonexponential waiting-time density at each site
of the (projected) chain: as long as the first moment 7 of
this density is finite, the mean-squared displacement
(X2(1)) has the leading asymptotic behavior ¢ /7, regard-
less of the actual form of the waiting-time distribution
[8].] These comments apply also to the case of spiky
boundaries to be considered in Sec. III. We mention this
in order to preclude the impression that Eq. (2.12) for K
represents a ‘“mean-field” approximation to K, whereas it
is in fact an exact result (both here and for the cases con-
sidered in Sec. III).

With reference to the original strip, T is just the mean
time to jump from the set of sites {j;,m Im=1,2,... , N}
with any given abscissa j;, to any member of the set of
sites {j;£1,m lm=1,2,... »N}. In other words, T is the
mean time to escape from any vertical line j=j, on the
strip to the adjacent lines j=j +1. The problem of
finding K reduces to that of finding this 7. On an infinite
square lattice, translation invariance in the vertical direc-
tion leads to the equation
(2.13)

T=1+11+7),

1
2
for the mean time 7 to jump in the horizontal direction
from any site. Hence 7=2, leading at once to the stan-
dard result K=1/7=1, or (X2?)=Kn=n/2. This con-
clusion is easily seen to be unaltered for a strip with per-
fectly reflecting boundary conditions. For a general value
of I" (the problem at hand), however, the calculation is
less trivial (but still far simpler than the direct calculation
given earlier).
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C. Evaluation of T

When we geometrically project the strip onto a chain
in the x direction, all the N sites (j,m) with a given
abscissa j and 1<m =N are regarded as entirely
equivalent sites (or “internal states”); all N of these are
collapsed onto a single site on the projected linear chain.
We seek T, the mean waiting time between jumps from
any site on this chain to a neighboring site on it. On the
original strip, let T,,(m =1, ..., N) denote the mean first
passage time for a walker on the strip starting at a site
with ordinate m to take a step in the horizontal direction.
As all the N sites with a common abscissa j are equivalent
as far as the projection is concerned, the mean waiting
time 7T is just the arithmetic mean of the {T,,}, i.e.,

N
T=(1/N) 3 T, . (2.14)
m=1
It must be noted that there is no m dependent weight fac-
tor attached to the T, in Eq. (2.14), in view of the com-
plete equivalence of the N sites. In particular, T is not
the mean of {T,,} weighted with any equilibrium distri-
bution, as there is in fact no equilibrium distribution on
the infinite lattice.

It is seen readily that {7, } obey the following coupled

linear equations:

T1=1+FT1+%(1_F)T2 >

T,=1+MT, +T,,) Q<m<N—1), (.15

Ty=1+1(1—T)Ty_,+TTy .

Adding together all the N equations in (2.15), we get

ANT=N-+(C—INT,— 1T, +Ty—1Ty_)) . (2.16)

Using the first and the last of Egs. (2.15) in the second

term on the right, we find
|
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FIG. 2. Variation of the diffusion coefficient K with I, the
stay probability at boundary sites, for different values of the
strip width N. When ’'=1, K =1 forall N >2.
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On using this in Eq. (2.12), Eq. (2.9) for K follows at once.

Equation (2.9) is easily shown to hold good for N =2 as
well. This result shows precisely how the diffusion
coefficient on a strip depends on both the size of the
structure (as specified by the width N) and the nature of
the boundary (as characterized by I'). Figure 2 shows
the variation of K with the sojourn probability . We
note that I'=1 (perfectly reflecting boundaries) is a very
special, highly ““degenerate” case, as stated earlier. The
result of Eq. (1.2) for a myopic RW is recovered on set-
ting I'=0 in Eq. (2.9).

The foregoing expression is easily generalized to the
case of dissimilar boundaries: if the stay probabilities at
sites with m =1 and N are T and I'’, respectively, we find

T=2+ (2.17)

K=

AN(1-T)(1—-I")+U@4r—-1)1—-r’")+@r'—1y1—-r) -

III. STRIP WITH SPIKED EDGES

To mimic the effect of “rough” edges, we consider side
branches or spikes attached to the edge sites (j,1) and
(j,N). Each branch has L sites, and the transition proba-
bilities per time step are as shown in Fig. 3. We note that
sites on distinct spikes are not connected directly: to go
from one such site to another, the walker must pass
through the corresponding base sites on the edge of the
strip. This makes it possible to write down K for the
structure from Eq. (2.12) by the following stratagem. We
have merely to compute the mean time of first passage
from a site (j, 1) on the edge of the strip to any of its three
neighboring sites belonging to the strip, namely, (j —1,1),

(2.18)

Y 1-ao

(jN+L) I b <D o

(jN+1) @ °
) 1/2( )B A

: VQ:

FIG. 3. Strip with identical branches attached to each
boundary site. Transition probabilities are indicated.
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(j+1,1), or (j,2). In doing so, we must naturally allow
for all possible excursions on the spike attached to the
site (j,1). The effect of the spike is therefore to produce a
certain staying probability distribution at the correspond-
ing base site. As we have already explained, all that is re-
quired for the calculation of K is the first moment of this
distribution: we must replace the mean exit time
(1—T)" ! out of a surface site on the original strip by the
mean first passage time referred to above. With this
identification, the random walk on the spiked structure
becomes equivalent to that on the original structure at
the level of the leading asymptotic behavior of {X?2) (and
only at this level). A straightforward calculation [9,10]
yields, for the required first passage time on the spiked
structure, the expression

TG, D—-{G+1L1),(—1,1),(j,2)}]
_ 2aB(L—1)+a+p
all—B—y)
Substituting the quantity on the right-hand side in Eq.

(3.1) for (1—T) ! in Eq. (2.9), we get, for the diffusion
coefficient on the strip with spiked edges,

Na(l—B—vy)
2(N—2)a(1—B—y)+6(L—1)aB+3(a+p)

(3.2)

(3.1)

K=

As before, this result is easily generalized to the case of
dissimilar spikes at the two edges (with parameters
a,B,v,L and a',B,y',L’, respectively): (1—T")" ! in Eq.
(2.18) is replaced by an expression identical to that on the
right-hand side in Eq. (3.1), but involving primed quanti-
ties.

A number of special cases may be read off from Eq.
(3.2). For instance, an unbiased simple RW with
reflecting boundary conditions at the tips of the branches
implies =1, B=1, and y =0. Then

K=N/(2N+2L) . (3.3)

On the other hand, for a myopic RW we have a=1,
=1, and y =0, leading to

K=N/2N+2L—1). (3.4)

It is evident that this method for finding K is directly
applicable if each branch is replaced by any other struc-
ture [11,12], as long as the translational invariance in j is
retained, and there are no direct connections (outside the
strip) between the appendages to different sites on the
boundary of the original strip. Moreover, the RW should
remain diffusive, in the sense that {X2)~Kn asymptoti-
cally. For a random-comb-like situation [13,14], with
side branches of random lengths drawn from a common
distribution attached to the boundary sites, the foregoing
will yield a mean-field expression for K, provided the
mean branch length is finite. If this mean is infinite, the
behavior of (X?) is subdiffusive—signaled, in the
present formalism, by the vanishing of K. Extracting the
leading asymptotic behavior of { X?) in subdiffusive cases
is somewhat more involved, and is not our main concern
here.

Finally, it is possible to generalize Eq. (2.9) to an RW
in d(=2) dimensions on a lattice that is unbounded in
(d —1) directions (x,y,...), and bounded in any one of

the coordinates ({=1,2,...,N). By an obvious symme-
try we have
K= lim {(X?)/n= lim (Y?)/n="--- . (3.5)
n-— co n— o

As in the case of the strip, the walker at an edge site
(=1 or N) has a stay probability I" per time step, and a
probability (1—T')/(2d —1) of jumping to any of the
available nearest-neighbor sites. We then find the result

_ N(1-T)
Nd(1—-T)+2ld—1 ~
When d =2, Eq. (2.9) is recovered. The corresponding

extensions of Egs. (2.18), (3.2), etc. follow from Eq. (3.6)
in a straightforward manner.

(3.6)

APPENDIX: DIFFUSION COEFFICIENT
FOR REGULAR COMBS

As a special case of the method we have used to find K
for a strip with spikes, we can write down K in the case of
regular combs (linear chains with identical branches) of
various kinds (Figs. 4 and 5).

One begins with the basic result {X?)=n (i.e., K=1)
for a simple, unbiased RW on an infinite chain. If the
walker remains at a site with probability T at the end of a
time step, and jumps to either one of the two neighboring
sites with probability (1—T")/2, then it is shown easily
that (X?)=(1—T)n, i.e., K=1—T. The mean first pas-
sage time out of any site is (1—T')”!. Now consider a
chain with branches of unit length on either side (Fig. 4),
with transition probabilities per unit time as indicated.
As the branches are finite in extent, with no absorbing
sites, the RW continues to be diffusive. A simple calcula-
tion yields the mean first passage time from any backbone
site to either of its neighbors on the backbone. Equating
this to (1—I')7! yields the diffusion constant on the
comb. The result is

K=ad'(1—B—B' —v)/(aad'+af' +a'B) . (A1)
A large number of special cases can be read off from (A1).
For instance, if the branches occur on one side alone, and
the walker does not remain at any site at the end of a
time step, we have a=1, =0, and y=0. Hence
K=(1—B)/(14+B) in this case. If, further, =1 (the

3

M (-a)

(1-a)

FIG. 4. Chain with branches (of one site each) on either side.
Transition probabilities are indicated.
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FIG. 5. Chain with branches of L and L’ sites, respectively,
on the sides. Transition probabilities are indicated.

walker jumps with equal probability to each available

nearest-neighbor site), then K=1 on the chain—the

value of K for a simple RW on a square lattice (i.e.,
d=2).

An immediate generalization of Eq. (A1) is possible, to
the case of a comb with branches of L and L’ sites, re-
spectively (Fig. 5). Since L and L’ are finite, the RW is
still diffusive. To find the new value of K, all that is need-
ed is to equate the mean first passage time from the first
site on the branch to the neighboring site on the backbone
with that for the previous case: in other words, to re-
place ™! in (A1) by a !'+2(L—1), and a'~! by
a’“'4+2(L'—1). Therefore

ad'(1—B—B"—vy)

k= ad'[1+28(L —1)+2B(L'—1)]+a'B+aB’ (A2)

Again, a number of special cases may be read off from
Eq. (A2). For example, a myopic walker (who jumps
from every site to any of the nearest-neighbor sites on the
structure with equal probabilities) has a=a'=1,
B=p'=1%, and y=0: the diffusion constant is, in this
case, simply

K=1/(L+L"+1). (A3)
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